Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Forensic Medicine ; (6): 344-350, 2021.
Article in English | WPRIM | ID: wpr-985223

ABSTRACT

Objective Based on the theory of biomechanics, the finite element method was used to study the injury characteristics of different parts of brain hit by fist with different force and to predict the risk of craniocerebral injury, in order to provide reference for actual medical protection and forensic identification. Methods The finite element model of fist was constructed by using DICOM data modeling method and related software, and the effective mass and speed of fist were used to represent the kinetic energy of fist, and combined with human finite element model THUMS 4.02, the characteristics of craniocerebral injury caused by frontal and lateral blows were parametrically simulated. Results The probability of direct death from a blow to the head was low, but as fist power increased, so did the risk of craniocerebral injury. The characteristics of craniocerebral injury were also significantly different with the different fist hitting head locations. When the frontal area was attacked, the maximum equivalent stress of skull was 122.40 MPa, while that of brain tissue was 4.31 kPa. When the temporal area was attacked, the maximum equivalent stress of skull was 71.53 MPa, while that of brain tissue was 7.09 kPa. Conclusion The characteristics and risks of skull fracture and brain tissue injury are different when different parts of the brain are hit by fist. When the frontal area is hit, the risk of skull fracture is significantly higher than when the temporal area is hit. The risk of brain tissue injury is the opposite. The position with the highest probability of skull fracture is generally the place where the skull is directly impacted, and with the conduction of stress waves, it will spread to other parts of the skull, while the position with the highest risk of brain tissue injury is not the place where the brain is directly impacted.


Subject(s)
Humans , Biomechanical Phenomena , Craniocerebral Trauma/etiology , Finite Element Analysis , Head , Skull , Skull Fractures/etiology
SELECTION OF CITATIONS
SEARCH DETAIL